The F14 class notes summarize the equations and boundary conditions for the potential $\phi(x, y)$ which must hold for an external aerodynamic flow. The corresponding equations and BC's for the streamfunction $\psi(x, y)$ are:

1) at all points in the flowfield: $\quad \nabla^{2} \psi=0 \quad$ (irrotationality requirement)
2) at all points on the body surface: $\psi=$ const. (surface flow tangency requirement)
3) at all points "at infinity": $\quad \partial \psi / \partial y=V_{\infty}$ (consistency with freestream flow)

A horizontal-freestream flow about a circular cylinder of radius R centered on the origin is supposedly given by the following streamfunction:

$$
\psi(r, \theta)=V_{\infty} \sin \theta\left(r-\frac{R^{2}}{r}\right)+1
$$

or equivalently

$$
\psi(x, y)=V_{\infty}\left(y-\frac{y R^{2}}{x^{2}+y^{2}}\right)+1
$$

Does this flow meet the necessary equations and BC's $1,2,3$? Verify Yes or No for each.

Useful reference:

Definitions in cartesian and polar coordinates, for any vector field \vec{F} and scalar field $f \ldots$

$$
\begin{aligned}
\nabla \cdot \vec{F} & \equiv \frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{1}{r} \frac{\partial\left(r F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} \\
\nabla \times \vec{F} & \equiv \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{1}{r} \frac{\partial\left(r F_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial F_{r}}{\partial \theta} \quad(\hat{k} \text { component }) \\
\nabla f & \equiv \frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}=\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} \\
\nabla^{2} f & \equiv \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}
\end{aligned}
$$

